Harmonizing Healthy Cohorts to Support Multicenter Studies on Migraine Classification using Brain MRI Data

Author:

Yoon HyunsooORCID,Schwedt Todd J.,Chong Catherine D.,Olatunde Oyekanmi,Wu TeresaORCID

Abstract

AbstractMulticenter and multi-scanner imaging studies might be needed to provide sample sizes large enough for developing accurate predictive models. However, multicenter studies, which likely include confounding factors due to subtle differences in research participant characteristics, MRI scanners, and imaging acquisition protocols, might not yield generalizable machine learning models, that is, models developed using one dataset may not be applicable to a different dataset. The generalizability of classification models is key for multi-scanner and multicenter studies, and for providing reproducible results. This study developed a data harmonization strategy to identify healthy controls with similar (homogenous) characteristics from multicenter studies to validate the generalization of machine-learning techniques for classifying individual migraine patients and healthy controls using brain MRI data. The Maximum Mean Discrepancy (MMD) was used to compare the two datasets represented in Geodesic Flow Kernel (GFK) space, capturing the data variabilities for identifying a “healthy core”. A set of homogeneous healthy controls can assist in overcoming some of the unwanted heterogeneity and allow for the development of classification models that have high accuracy when applied to new datasets. Extensive experimental results show the utilization of a healthy core. One dataset consists of 120 individuals (66 with migraine and 54 healthy controls) and another dataset consists of 76 (34 with migraine and 42 healthy controls) individuals. A homogeneous dataset derived from a cohort of healthy controls improves the performance of classification models by about 25% accuracy improvements for both episodic and chronic migraineurs.HighlightsThe harmonization method was established by Healthy Core Construction.The inclusion of a healthy core addresses intrinsic heterogeneity that exists within a healthy control cohort and in multicenter studies.The utilization of a healthy core can increase the accuracy and generalizability of brain imaging-based classification models.The proposed harmonization method offers flexible utilities for multicenter studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3