Abstract
AbstractObjectiveAlthough Levodopa-carbidopa intestinal gel (LCIG) treatment has shown to be efficacious in motor and some non-motor symptoms (NMS), not all the patients with advanced Parkinson’s disease (PD) are ideal candidates. To improve their selection analysis knowledge of prognostic factors is of great importance. We aimed to develop a novel machine learning model to predict the clinical outcomes of patients with advanced PD at 2 years under the LCIG therapy.MethodsThis was a longitudinal 24-month, observational study of 59 patients with advanced PD of a Greek multicenter registry under LCIG treatment from September 2019 to September 2021. Motor status was assessed with the Unified Parkinson’s Disease Rating Scale (UPDRS) part III (off) and IV. NMS were assessed by the NMS Questionnaire (NMSQ) and the Geriatric Depression Scale (GDS), the quality of life by PDQ-39 and severity by Hoehn &Yahr (HY). Multivariate linear regression, ARIMA, SARIMA, and Long Short-Term Memory-recurrent neural network (LSTM-RNN) models were used.ResultsDyskinesia duration and quality of life were significantly improved with LCIG (19% and 10% greater improvement for men than women, respectively). Multivariate linear regression models showed that UPDRS-III was decreased by 1.5 and 4.39 units per one unit of increase of the PDQ-39, UPDRS-IV indexes, respectively. Among all the time series models, the LSTM-RNN model predicts these clinical characteristics with highest accuracy (mean square error =0.0069)ConclusionsΤhe LSTM-RNN model predicts with highest accuracy sex dependent clinical outcomes of patients with advanced PD after two years of LCIG therapy.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Examining Machine Learning Methods for Accurate Parkinson’s Disease Identification;2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST);2024-04-09