Engineering of human myotubes toward a mature metabolic and contractile phenotype

Author:

Dreher Simon I.ORCID,Grubba Paul,von Toerne Christine,Moruzzi Alessia,Maurer Jennifer,Goj Thomas,Birkenfeld Andreas L.,Peter Andreas,Loskill PeterORCID,Hauck Stefanie M.,Weigert Cora

Abstract

1.AbstractSkeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle modelsin vitroare incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1-treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. ElevatedPPARGC1A, MYH7 and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated GLUT4 and increased insulin-dependent glucose uptake compared to myotubes differentiated without IGF1.To conclude, utilizing IGF1, we engineered human myotubes that recapitulate the physiological traits of skeletal musclein vivosuperior to established protocols and overcome limitations of previous standards. This novel “easy to use” model enables investigation of exercise on a molecular level.Abstract Figure

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3