Abstract
ABSTRACTBACKGROUNDInsecticides are critical for controlling mosquito populations and mitigating the spread of vector–borne disease, but their overuse has selected for resistant populations. A promising alternative to classical chemical insecticides is photosensitive molecules—here called photosensitive insecticides or PSIs—that when ingested and activated by light, generate broadly toxic reactive oxygen species. This mechanism of indiscriminate oxidative damage decreases the likelihood that target site modification-based resistance evolves. Here, we tested whether the PSIs, methylene blue (MB) and rose bengal (RB), are viable insecticides across the mosquito lineage.RESULTSMB and RB are phototoxic to bothAe. aegyptiandAn. gambiaeat micromolar concentrations, with greatest toxicity when larvae are incubated in the dark with the PSIs for 2 hr prior to photoactivation. MB is ten times more toxic than RB, and microscopy-based imaging suggests that this is because ingested MB escapes the larval gut and disperses throughout the hemocoel whereas RB remains confined to the gut. Adding food to the PSI-containing water has a bidirectional, concentration-dependent effect on PSI toxicity; toxicity increases at high concentrations but decreases at low concentrations. Finally, adding sand to the water increases the phototoxicity of RB toAedes aegypti.CONCLUSIONMB and RB are larvicidal via a light activated mechanism, and therefore, should be further investigated as an option for mosquito control.
Publisher
Cold Spring Harbor Laboratory
Reference44 articles.
1. WHO. Global vector control response 2017–2030. WHO, Geneva, (2017).
2. WHO. World malaria report 2021. World Health Organization, Geneva, (2021).
3. Becker N , Petric D , Zgomba M , Boase C , Dahl C , Madon M , et al. Mosquitoes and their control. Springer-Verlag, Berlin, (2010).
4. Emergence and re-emergence of mosquito-borne arboviruses
5. Recent trends in global insecticide use for disease vector control and potential implications for resistance management