Genetically-regulated pathway-polygenic risk score (GRPa-PRS): A risk stratification method to identify genetically regulated pathways in polygenic diseases

Author:

Li XiaoyangORCID,Fernandes Brisa S.ORCID,Liu AndiORCID,Lu Yimei,Chen JingchunORCID,Zhao ZhongmingORCID,Dai YulinORCID

Abstract

ABSTRACTBackgroundAlzheimer’s disease (AD) is a common neurodegenerative disease in the elderly population, with genetic factors playing an important role. A considerable proportion of elderly people carry a high genetic AD risk but evade AD. On the other hand, some individuals with a low risk for AD eventually develop AD. We hypothesized that unknown counterfactors might be involved in reversing the polygenic risk scores (PRS) prediction, which might provide insights into AD pathogenesis, prevention, and early clinical intervention.MethodsWe built a novel computational framework to identify genetically-regulated pathways (GRPa) using PRS-based stratification for each cohort. We curated two AD cohorts with genotyping data; the discovery and the replication dataset include 2722 and 2492 individuals, respectively. First, we calculated the optimized PRS model based on the three latest AD GWAS summary statistics for each cohort. Then, we sub-grouped the individuals by their PRS and clinical diagnosis into groups such as cognitively normal (CN) with high PRS for AD (resilient group), AD cases with low PRS (susceptible group), and AD/CNs participants with similar PRS backgrounds. Lastly, we imputed the individual genetically-regulated expression (GReX) and identified the differential GRPas between subgroups with gene-set enrichment analysis and gene-set variational analysis in 2 models with and without the effect ofAPOE.ResultsFor each subgroup, we conducted the same procedures in both the discovery and replication datasets across three PRS models for comparison. In Model 1 with theAPOEregion, we identified well-known AD-related pathways, including amyloid-beta clearance, tau protein binding, and astrocytes response to oxidative stress. In Model 2 without theAPOEregion, synapse function, microglia function, histidine metabolism, and thiolester hydrolase activity were significant, suggesting that they are pathways independent of the effect ofAPOE. Finally, our GRPa-PRS method reduces the false discovery rate in detecting differential pathways compared to another variants-based pathway PRS method.ConclusionsWe developed a framework,GRPa-PRS, to systematically explore the differential GRPas among individuals stratified by their estimated PRS. The GReX-level comparison among those groups unveiled new insights into the pathways associated with AD risk and resilience. Our framework can be extended to other polygenic complex diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3