Estimating multiplicity of infection, allele frequencies, and prevalences accounting for incomplete data

Author:

Hashemi MerajORCID,Schneider Kristan A.ORCID

Abstract

AbstractBackgroundMolecular surveillance of infectious diseases allows the monitoring of pathogens beyond the granularity of traditional epidemiological approaches and is well-established for some of the most relevant infectious diseases such as malaria. The presence of genetically distinct pathogenic variants within an infection, referred to as multiplicity of infection (MOI) or complexity of infection (COI) is common in malaria and similar infectious diseases. It is an important metric that scales with transmission intensities, potentially affects the clinical pathogenesis, and a confounding factor when monitoring the frequency and prevalence of pathogenic variants. Several statistical methods exist to estimate MOI and the frequency distribution of pathogen variants. However, a common problem is the quality of the underlying molecular data. If molecular assays fail not randomly, it is likely to underestimate MOI and the prevalence of pathogen variants.Methods and findingsA statistical model is introduced which explicitly addresses data quality, by assuming a probability by which a pathogen variant remains undetected in a molecular assay. This is different from the assumption of missing at random, for which a molecular assay either performs perfectly or fails completely. The method is applicable to a single molecular marker and allows to estimate allele-frequency spectra, the distribution of MOI, and the probability of variants to remain undetected (incomplete information). Based on the statistical model, expressions for the prevalence of pathogen variants are derived and differences between frequency and prevalence are discussed. The usual desirable asymptotic properties of the maximum-likelihood estimator (MLE) are established by rewriting the model into an exponential family. The MLE has promising finite sample properties in terms of bias and variance. The covariance matrix of the estimator is close to the Cramér-Rao lower bound (inverse Fisher information). Importantly, the estimator’s variance is larger than that of a similar method which disregards incomplete information, but its bias is smaller.ConclusionsAlthough the model introduced here has convenient properties, in terms of the mean squared error it does not outperform a simple standard method that neglects missing information. Thus, the new method is recommendable only for data sets in which the molecular assays produced poor quality results. This will be particularly true if the model is extended to accommodate information from multiple molecular markers at the same time, and incomplete information at one or more markers leads to strong depletion of sample size.

Publisher

Cold Spring Harbor Laboratory

Reference19 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3