Utilizing Aggregated Molecular Phenotype (AMP) Scores to Visualize Simultaneous Molecular Changes in Mass Spectrometry Imaging Data

Author:

Chappel Jessie R.,King Mary E.,Fleming Jonathon,Eberlin Livia S.ORCID,Reif David M.ORCID,Baker Erin S.ORCID

Abstract

ABSTRACTMass spectrometry imaging (MSI) has gained increasing popularity for tissue-based diagnostics due to its ability to identify and visualize molecular characteristics unique to different phenotypes within heterogeneous samples. Data from MSI experiments are often visualized using single ion images and further analyzed using machine learning and multivariate statistics to identifym/z features of interest and create predictive models for phenotypic classification. However, often only a single molecule orm/zfeature is visualized per ion image, and mainly categorical classifications are provided from the predictive models. As an alternative approach, we developed an aggregated molecular phenotype (AMP) scoring system. AMP scores are generated using an ensemble machine learning approach to first select features differentiating phenotypes, weight the features using logistic regression, and combine the weights and feature abundances. AMP scores are then scaled between 0 and 1, with lower values generally corresponding to class 1 phenotypes (typically control) and higher scores relating to class 2 phenotypes. AMP scores therefore allow the evaluation of multiple features simultaneously and showcase the degree to which these features correlate with various phenotypes, leading to high diagnostic accuracy and interpretability of predictive models. Here, AMP score performance was evaluated using metabolomic data collected from desorption electrospray ionization (DESI) MSI. Initial comparisons of cancerous human tissues to normal or benign counterparts illustrated that AMP scores distinguished phenotypes with high accuracy, sensitivity, and specificity. Furthermore, when combined with spatial coordinates, AMP scores allow visualization of tissue sections in one map with distinguished phenotypic borders, highlighting their diagnostic utility.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3