Abstract
AbstractThe structures of cell wall mannan hemicelluloses have changed during plant evolution. Recently, a new structure called β-galactoglucomannan (β-GGM) was discovered in eudicot plants. This galactoglucomannan has β-(1,2)-Gal-α-(1,6)-Gal disaccharide branches on some mannosyl residues of the strictly alternating Glc-Man backbone. Studies in Arabidopsis revealed β-GGM is related in structure, biosynthesis and function to xyloglucan. However, when and how plants acquired β-GGM remains elusive. Here, we studied mannan structures in many sister groups of eudicots. All glucomannan structures were distinct from β-GGM. In addition, we searched for candidate mannan β-galactosyltransferases (MBGT) in non-eudicot angiosperms. CandidateAtMBGT1 orthologues from rice and Amborella did not show MBGT activityin vivo. However, theAtMBGT1 orthologue from rice showed MUR3-like xyloglucan galactosyltransferase activity in complementation analysis using Arabidopsis. Further, reverse genetic analysis revealed that the enzyme contributes to proper root growth in rice. Together, gene duplication and diversification of GT47A-VII in eudicot evolution may have been involved in the acquisition of mannan β-galactosyltransferase activity. Our results indicate that β-GGM is likely to be a eudicot-specific mannan.
Publisher
Cold Spring Harbor Laboratory