Expert-level pediatric brain tumor segmentation in a limited data scenario with stepwise transfer learning

Author:

Boyd Aidan,Ye ZezhongORCID,Prabhu SanjayORCID,Tjong Michael C.,Zha Yining,Zapaishchykova AnnaORCID,Vajapeyam Sridhar,Hayat Hasaan,Chopra Rishi,Liu Kevin X.,Nabavidazeh Ali,Resnick Adam,Mueller Sabine,Haas-Kogan Daphne,Aerts Hugo J.W.L.,Poussaint Tina,Kann Benjamin H.

Abstract

ABSTRACTPurposeArtificial intelligence (AI)-automated tumor delineation for pediatric gliomas would enable real-time volumetric evaluation to support diagnosis, treatment response assessment, and clinical decision-making. Auto-segmentation algorithms for pediatric tumors are rare, due to limited data availability, and algorithms have yet to demonstrate clinical translation.MethodsWe leveraged two datasets from a national brain tumor consortium (n=184) and a pediatric cancer center (n=100) to develop, externally validate, and clinically benchmark deep learning neural networks for pediatric low-grade glioma (pLGG) segmentation using a novel in-domain, stepwise transfer learning approach. The best model [via Dice similarity coefficient (DSC)] was externally validated and subject to randomized, blinded evaluation by three expert clinicians wherein clinicians assessed clinical acceptability of expert- and AI-generated segmentations via 10-point Likert scales and Turing tests.ResultsThe best AI model utilized in-domain, stepwise transfer learning (median DSC: 0.877 [IQR 0.715-0.914]) versus baseline model (median DSC 0.812 [IQR 0.559-0.888];p<0.05). On external testing (n=60), the AI model yielded accuracy comparable to inter-expert agreement (median DSC: 0.834 [IQR 0.726-0.901] vs. 0.861 [IQR 0.795-0.905],p=0.13). On clinical benchmarking (n=100 scans, 300 segmentations from 3 experts), the experts rated the AI model higher on average compared to other experts (median Likert rating: 9 [IQR 7-9]) vs. 7 [IQR 7-9],p<0.05 for each). Additionally, the AI segmentations had significantly higher (p<0.05) overall acceptability compared to experts on average (80.2% vs. 65.4%). Experts correctly predicted the origins of AI segmentations in an average of 26.0% of cases.ConclusionsStepwise transfer learning enabled expert-level, automated pediatric brain tumor auto-segmentation and volumetric measurement with a high level of clinical acceptability. This approach may enable development and translation of AI imaging segmentation algorithms in limited data scenarios.SummaryAuthors proposed and utilized a novel stepwise transfer learning approach to develop and externally validate a deep learning auto-segmentation model for pediatric low-grade glioma whose performance and clinical acceptability were on par with pediatric neuroradiologists and radiation oncologists.Key PointsThere are limited imaging data available to train deep learning tumor segmentation for pediatric brain tumors, and adult-centric models generalize poorly in the pediatric setting.Stepwise transfer learning demonstrated gains in deep learning segmentation performance (Dice score: 0.877 [IQR 0.715-0.914]) compared to other methodologies and yielded segmentation accuracy comparable to human experts on external validation.On blinded clinical acceptability testing, the model received higher average Likert score rating and clinical acceptability compared to other experts (Transfer-Encodermodel vs. average expert: 80.2% vs. 65.4%)Turing tests showed uniformly low ability of experts’ ability to correctly identify the origins ofTransfer-Encodermodel segmentations as AI-generated versus human-generated (mean accuracy: 26%).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3