Geographical validation of the Smart Triage Model by age group

Author:

Zhang CherriORCID,Wiens Matthew OORCID,Dunsmuir Dustin,Pillay Yashodani,Huxford Charly,Kimutai David,Tenywa Emmanuel,Ouma Mary,Kigo Joyce,Kamau Stephen,Chege Mary,Kenya-Mugisha Nathan,Mwaka Savio,Dumont Guy A,Kissoon Niranjan,Akech Samuel,Ansermino J MarkORCID

Abstract

AbstractAge is an important risk factor among critically ill children with neonates being the most vulnerable. Clinical prediction models need to account for age differences and must be externally validated and updated, if necessary, to enhance reliability, reproducibility, and generalizability. We externally validated the Smart Triage model using a combined prospective baseline cohort from three hospitals in Uganda and two in Kenya using admission, mortality, and readmission. We evaluated model discrimination using area under the receiver-operator curve (AUROC) and visualized calibration plots. In addition, we performed subsetting analysis based on age groups (< 30 days, ≤ 2 months, ≤ 6 months, and < 5 years). We revised the model for neonates (< 1 month) by re-estimating the intercept and coefficients and selected new thresholds to maximize sensitivity and specificity. 11595 participants under the age of five (under-5) were included in the analysis. The proportion with an outcome ranged from 8.9% in all children under-5 (including neonates) to 26% in the neonatal subset alone. The model achieved good discrimination for children under-5 with AUROC of 0.81 (95% CI: 0.79-0.82) but poor discrimination for neonates with AUROC of 0.62 (95% CI: 0.55-0.70). Sensitivity at the low-risk thresholds (CI) were 0.85 (0.83-0.87) and 0.68 (0.58-0.76) for children under-5 and neonates, respectively. Specificity at the high-risk thresholds were 0.93 (0.93-0.94) and 0.96 (0.94-0.98) for children under-5 and neonates, respectively. After model revision for neonates, we achieved an AUROC of 0.83 (0.79-0.87) with 13% and 41% as the low- and high-risk thresholds, respectively. The Smart Triage model showed good discrimination for children under-5. However, a revised model is recommended for neonates due to their uniqueness in disease susceptibly, host response, and underlying physiological reserve. External validation of the neonatal model and additional external validation of the under-5 model in different contexts is required.Author summaryClinical prediction model has become evermore popular in various medical fields as it can improve clinical decision-making by providing personalized risk estimate for patients. It is a statistical technique that incorporates patient-specific factors to personalize treatment and optimize health resources allocation. Clinical prediction models need to be validated in a different setting and population, and updated accordingly to ensure accuracy and relevance in clinical settings. We aim to evaluate one such model currently being implemented at the outpatient pediatric department at multiple hospitals in Uganda and Kenya. This model has been incorporated into a digital platform that is used to quickly identify critically ill children at triage. After validating the model against different age groups, we found the current model is not well suited for neonates and thus attempted to update the model. Our study provides new insight into clinical variables that impact neonatal outcome and we hope to improve neonatal morality for low-resource settings.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. UNICEF. Under-five mortality 2023 [Available from: https://data.unicef.org/topic/child-survival/under-five-mortality/.

2. Organization WH. Child mortality (under 5 years) 2022 [Available from: https://www.who.int/news-room/fact-sheets/detail/levels-and-trends-in-child-under-5-mortality-in-2020.

3. A Machine Learning-Based Triage Tool for Children With Acute Infection in a Low Resource Setting;Pediatr Crit Care Med,2019

4. Regional scale-up of an Emergency Triage Assessment and Treatment (ETAT) training programme from a referral hospital to primary care health centres in Guatemala

5. Triage conducted by lay-staff and emergency training reduces paediatric mortality in the emergency department of a rural hospital in Northern Mozambique

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3