Paridiprubart inhibits TLR4-dependant NF-κB activation by multiple pathogens

Author:

Malty Ramy,Hilbe Richard,Ahn Sang,Kesselman Leah,Lam Jessica,Kasawara Karina,Costa Larissa,Rajakulendran Nishani,Gordon Blair,Brooks Michael,Mubareka Samira,Tancevski Ivan,Gray-Owen Scott D.

Abstract

AbstractRespiratory pathogens such as SARS-CoV-2 and influenza can activate an exaggerated inflammatory response (cytokine storm) in the lungs that may result in acute respiratory distress syndrome (ARDS), hospitalization, and death. Therapies that target a specific pathogen (i.e. anti-virals) must, by nature, be selected after a specific diagnosis and may become ineffective due to pathogen evolution. An alternate strategy is to counter the exaggerated innate immune response present in ARDS patients using host-directed drug therapies that are agnostic to the infectious agent to overcome both of these challenges. Originally described as the innate immune receptor for lipopolysaccharide (LPS), Toll-like receptor 4 (TLR4) is now understood to be an important mediator of inflammation caused by a variety of pathogen-associated molecular patterns (PAMPs) and host-derived damage-associated molecular patterns (DAMPs). Here we show that paridiprubart, a monoclonal antibody that prevents TLR4 dimer formation, inhibits the response to TLR4 agonists including LPS, the SARS-CoV-2 spike protein, the DAMP high mobility group box 1 (HMGB1), as well as the NF-κB response to infection by both viral and bacterial pathogens. Notable in this regard, we demonstrate that SARS-CoV-2 increases HMGB1 levels, and that paridiprubart inhibits both the SARS-CoV-2 and HMGB1-triggered NF-κB response, illustrating its potential to suppress this self-amplifying inflammatory signal. We also observed that the inhibitory effect of paridiprubart is apparent when cells are exposed to the SARS-CoV-2 spike protein, which is itself a direct TLR4 agonist. In the context of active infection, paridiprubart suppressed the NF-κB-dependent response elicited by infection with SARS-CoV-2, the seasonal coronavirus 229E, influenza A virus orHaemophilus influenzae, a gram-negative bacterial pathogen. Combined, these findings reinforce the central role played by TLR4 in the inflammatory response to infection by diverse pathogens, and demonstrates the protective potential of paridiprubart-dependent inhibition of pathogenic TLR4 responses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3