CD22L Conjugation to Insulin Attenuates Insulin-Specific B cell Activation

Author:

Apley Kyle D.ORCID,Griffith Amber S.ORCID,Downes Grant M.ORCID,Ross PatrickORCID,Farrell Mark P.ORCID,Kendall PeggyORCID,Berkland Cory J.ORCID

Abstract

AbstractPancreatic islet-reactive B lymphocytes promote Type 1 diabetes (T1D) by presenting antigen to islet-destructive T cells. Teplizumab, an anti-CD3 monoclonal, delays T1D onset in patients at risk, but additional therapies are needed to prevent disease entirely. Therefore, bifunctional molecules were designed to selectively inhibit T1D-promoting anti-insulin B cells by conjugating a ligand for the B cell inhibitory receptor CD22 (i.e., CD22L) to insulin, which permit these molecules to concomitantly bind to anti-insulin B cell receptors (BCRs) and CD22. Two prototypes were synthesized: 2:2 insulin-CD22L conjugate on a 4-arm PEG backbone, and 1:1 insulin-CD22L direct conjugate. Transgenic mice (125TgSD) expressing anti-insulin BCRs provided cells for in vitro testing. Cells were cultured with constructs for three days then assessed by flow cytometry. Duplicate wells with anti-CD40 simulated T cell help. Surprisingly, a 2-insulin 4-arm PEG control caused robust proliferation and activation-induced CD86 upregulation. Anti-CD40 further boosted these effects. This was unexpected, as soluble insulin alone has no effect, and may indicate that BCR-crosslinking occurs when antigens are tethered by the PEG backbone. Addition of CD22L via the 2:2 insulin-CD22L conjugate restored B cell properties to that of controls without additional beneficial effect. In contrast, the 1:1 insulin-CD22L direct conjugate significantly reduced anti-insulin B cell proliferation in the presence of anti-CD40. CD22L alone had no effect, and the constructs did not affect WT B cells. Thus, high valency constructs activate anti-insulin B cells, while low-valency antigen-CD22L conjugates co-ligate BCR and CD22, reducing B cell activation in response to simulated T cell help and reducing pathogenic B cell numbers without harming normal cells. Thus, the insulin-CD22L direct conjugate is a promising candidate for preclinical trials to prevent T1D without inducing immunodeficiency

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. B Cells in Autoimmune Diseases;Scientifica,2012

2. Sites and Stages of Autoreactive B Cell Activation and Regulation

3. Sialylated multivalent antigens engage CD22in transand inhibit B cell activation

4. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo;Journal of Experimental Medicine,2009

5. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3