Clinical super-resolution computed tomography of bone microstructure: application in musculoskeletal and dental imaging

Author:

Rytky S.J.O.ORCID,Tiulpin A.ORCID,Finnilä M.A.J.ORCID,Karhula S.S.ORCID,Sipola A.ORCID,Kurttila V.,Valkealahti M.ORCID,Lehenkari P.ORCID,Joukainen A.ORCID,Kröger H.ORCID,Korhonen R.K.ORCID,Saarakkala S.ORCID,Niinimäki J.ORCID

Abstract

AbstractObjectivesClinical cone-beam computed tomography (CBCT) devices are limited to imaging features of half a millimeter in size. Hence, they do not allow clinical quantification of bone microstructure, which plays an important role in osteoarthritis, osteoporosis and fracture risk. For maxillofacial imaging, changes in small mineralized structures are important for dental, periodontal and ossicular chain diagnostics as well as treatment planning. Deep learning (DL)-based super-resolution (SR) models could allow for better evaluation of these microstructural details. In this study, we demonstrate a widely applicable method for increasing the spatial resolution of clinical CT images using DL, which only requires training on a limited set of data that are easy to acquire in a laboratory setting from e.g. cadaver knees. Our models are assessed rigorously for technical image quality, ability to predict bone microstructure, as well as clinical image quality of the knee, wrist, ankle and dentomaxillofacial region.Materials and methodsKnee tissue blocks from five cadavers and six total knee replacement patients as well as 14 extracted teeth from eight patients were scanned using micro-computed tomography. The images were used as training data for the developed DL-based SR technique, inspired by previous studies on single-image SR. The technique was benchmarked with anex vivotest set, consisting of 52 small osteochondral samples imaged with clinical and laboratory CT scanners, to quantify bone morphometric parameters. A commercially available quality assurance phantom was imaged with a clinical CT device, and the technical image quality was quantified with a modulation transfer function. To visually assess the clinical image quality, CBCT studies from wrist, knee, ankle, and maxillofacial region were enhanced with SR and contrasted to interpolated images. A dental radiologist and dental surgeon reviewed maxillofacial CBCT studies of nine patients and corresponding SR predictions.ResultsThe SR models yielded a higher Pearson correlation to bone morphological parameters on theex vivotest set compared to the use of a conventional image processing pipeline. The phantom analysis confirmed a higher spatial resolution on the images enhanced by the SR approach. A statistically significant increase of spatial resolution was seen in the third, fourth, and fifth line pair patterns. However, the predicted grayscale values of line pair patterns exceeded those of uniform areas. Musculoskeletal CBCT images showed more details on SR predictions compared to interpolation. Averaging predictions on orthogonal planes improved visual quality on perpendicular planes but could smear the details for morphometric analysis. SR in dental imaging allowed to visualize smaller mineralized structures in the maxillofacial region, however, some artifacts were observed near the crown of the teeth. The readers assessed mediocre overall scores in all categories for both CBCT and SR. Although not statistically significant, the dental radiologist slightly preferred the original CBCT images. The dental surgeon scored one of the SR models slightly higher compared to CBCT. The interrater variability κ was mostly low to fair. The source code (https://doi.org/10.5281/zenodo.8041943) and pretrained SR networks (https://doi.org/10.17632/4xvx4p9tzv.1) are publicly available.ConclusionsUtilizing experimental laboratory imaging modalities in model training could allow pushing the spatial resolution limit beyond state-of-the-art clinical musculoskeletal and dental CBCT imaging. Implications of SR include higher patient throughput, more precise diagnostics, and disease interventions at an earlier state. However, the grayscale distribution of the images is modified, and the predictions are limited to depicting the mineralized structures rather than estimating density or tissue composition. Finally, while the musculoskeletal images showed promising results, a larger maxillofacial dataset would be recommended for training SR models in dental applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3