Abstract
ABSTRACTGene clusters are genomic loci that contain multiple genes that are functionally and genetically linked. Gene clusters collectively encode diverse functions, including small molecule biosynthesis, nutrient assimilation, metabolite degradation, and production of proteins essential for growth and development. Identifying gene clusters is a powerful tool for small molecule discovery and provides insight into the ecology and evolution of organisms. Current detection algorithms focus on canonical “core” biosynthetic functions many gene clusters encode, while overlooking uncommon or unknown cluster classes. These overlooked clusters are a potential source of novel natural products and comprise an untold portion of overall gene cluster repertoires. Unbiased,function-agnosticdetection algorithms therefore provide an opportunity to reveal novel classes of gene clusters and more precisely define genome organization. We presentCLOCI(Co-occurrence Locus and Orthologous Cluster Identifier), an algorithm that identifies gene clusters using multiple proxies of selection for coordinated gene evolution. Our approach generalizes gene cluster detection and gene cluster family circumscription, improves detection of multiple known functional classes, and unveils noncanonical gene clusters.CLOCIis suitable for genome-enabled small molecule mining, and presents an easily tunable approach for delineating gene cluster families and homologous loci.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献