Converging on consistent functional connectomics

Author:

Luppi Andrea I.ORCID,Gellersen Helena M.ORCID,Liu Zhen-QiORCID,Peattie Alexander R. D.ORCID,Manktelow Anne E.ORCID,Adapa RamORCID,Owen Adrian M.ORCID,Naci LorinaORCID,Menon David K.ORCID,Dimitriadis Stavros I.ORCID,Stamatakis Emmanuel A.ORCID

Abstract

AbstractFunctional interactions between brain regions can be viewed as a network, empowering neuroscientists to leverage network science to investigate distributed brain function. However, obtaining a brain network from functional neuroimaging data involves multiple steps of data manipulation, which can drastically affect the organisation and validity of the estimated brain network and its properties. Here, we provide a systematic evaluation of 576 unique data-processing pipelines for functional connectomics from resting-state functional MRI, obtained from all possible recombinations of popular choices for brain atlas type and size, connectivity definition and selection, and global signal regression. We use the portrait divergence, an information-theoretic measure of differences in network topology across scales, to quantify the influence of analytic choices on the overall organisation of the derived functional connectome. We evaluate each pipeline across an entire battery of criteria, seeking pipelines that (i) minimise spurious test-retest discrepancies of network topology, while simultaneously (ii) mitigating motion confounds, and being sensitive to both (iii) inter-subject differences and (iv) experimental effects of interest, as demonstrated by propofol-induced general anaesthesia. Our findings reveal vast and systematic variability across pipelines’ suitability for functional connectomics. Choice of the wrong data-processing pipeline can lead to results that are not only misleading, but systematically so, distorting the functional connectome more drastically than the passage of several months. We also found that the majority of pipelines failed to meet at least one of our criteria. However, we identified 8 candidates satisfying all criteria across each of four independent datasets spanning minutes, weeks, and months, ensuring the generalisability of our recommendations. Our results also generalise to alternative acquisition parameters and preprocessing and denoising choices. By providing the community with a full breakdown of each pipeline’s performance across this multi-dataset, multi-criteria, multi-scale and multi-step approach, we establish a comprehensive set of benchmarks to inform future best practices in functional connectomics.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3