A Molecular Communication model for cellular metabolism

Author:

Sakkaff ZahmeethORCID,Freiburger Andrew P.ORCID,Catlett Jennie L.,Cashman Mikaela,Immaneni Aditya,Buan Nicole R.,Cohen Myra B.ORCID,Henry ChristopherORCID,Pierobon MassimilianoORCID

Abstract

AbstractUnderstanding cellular engagement with its environment is essential to control and monitor metabolism. Molecular Communication theory (MC) offers a computational means to identify environmental perturbations that direct or signify cellular behaviors by quantifying the information about a molecular environment that is transmitted through a metabolic system. We developed an model that integrates conventional flux balance analysis metabolic modeling (FBA) and MC to mechanistically expand the scope of MC, and thereby uniquely blends mechanistic biology and information theory to understand how substrate consumption is captured reaction activity, metabolite excretion, and biomass growth. This is enabled by defining several channels through which environmental information transmits in a metabolic network. The information flow in bits that is calculated through this workflow further determines the maximal metabolic effect of environmental perturbations on cellular metabolism and behaviors, since FBA simulates maximal efficiency of the metabolic system. We exemplify this method on two intestinal symbionts –Bacteroides thetaiotaomicronandMethanobrevibacter smithii– and visually consolidated the results into constellation diagrams that facilitate interpretation of information flow from given environments and thereby cultivate the design of controllable biological systems. The unique confluence of metabolic modeling and information theory in this model advances basic understanding of cellular metabolism and has applied value for the Internet of Bio-Nano Things, synthetic biology, microbial ecology, and autonomous laboratories.

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

1. The internet of Bio-Nano things

2. Moving forward with molecular communication: From theory to human health applications;Proceedings of the IEEE,2019

3. The promise of optogenetics in cell biology: interrogating molecular circuits in space and time;Nature Reviews,2010

4. The promise of optogenetics in cell biology: interrogating molecular circuits in space and time;Nature Methods,2011

5. Remote control of cellular behaviour with magnetic nanoparticles;Nature Nanotechnology,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3