Managing the Infodemic: Leveraging Deep Learning to Evaluate the Maturity Level of AI-Based COVID-19 Publications for Knowledge Surveillance and Decision Support

Author:

Awasthi Raghav,Nagori Aditya,Mishra Shreya,Mathur Anya,Mathur Piyush,Nasri Bouchra

Abstract

ABSTRACTCOVID-19 pandemic has taught us many lessons, including the need to manage the exponential growth of knowledge, fast-paced development or modification of existing AI models, limited opportunities to conduct extensive validation studies, the need to understand bias and mitigate it, and lastly, implementation challenges related to AI in healthcare. While the nature of the dynamic pandemic, resource limitations, and evolving pathogens were key to some of the failures of AI to help manage the disease, the infodemic during the pandemic could be a key opportunity that we could manage better. We share our research related to the use of deep learning methods to quantitatively and qualitatively evaluate AI-based COVID-19 publications which provides a unique approach to identify “mature” publications using a validated model and how that can be leveraged further by focused human-in-loop analysis. The study utilized research articles in English that were human-based, extracted from PubMed spanning the years 2020 to 2022. The findings highlight notable patterns in publication maturity over the years, with consistent and significant contributions from China and the United States. The analysis also emphasizes the prevalence of image datasets and variations in employed AI model types. To manage an infodemic during a pandemic, we provide a specific knowledge surveillance method to identify key scientific publications in near real-time. We hope this will enable data-driven and evidence-based decisions that clinicians, data scientists, researchers, policymakers, and public health officials need to make with time sensitivity while keeping humans in the loop.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3