Abstract
ABSTRACTBackgroundThe molecular mechanisms underlying Fontan associated liver disease (FALD) remain largely unknown. We aimed to assess intrahepatic transcriptomic differences among patients with FALD according to the degree of liver fibrosis and clinical outcomes.MethodsThis retrospective cohort study included adults with the Fontan circulation at the Ahmanson/UCLA Adult Congenital Heart Disease Center. Clinical, laboratory, imaging and hemodynamic data prior to the liver biopsy were extracted from medical records. Patients were classified into early (F1-F2) or advanced fibrosis (F3-F4). RNA was isolated from formalin-fixed paraffin embedded liver biopsy samples; RNA libraries were constructed using rRNA depletion method and sequencing was performed on Illumina Novaseq 6000. Differential gene expression and gene ontology analyses were carried out using DESeq2 and Metascape. Medical records were comprehensively reviewed for a composite clinical outcome which included decompensated cirrhosis, hepatocellular carcinoma, liver transplantation, protein-losing enteropathy, chronic kidney disease stage 4 or higher, or death.ResultsPatients with advanced fibrosis had higher serum BNP levels and Fontan, mean pulmonary artery and capillary wedge pressures. The composite clinical outcome was present in 23 patients (22%) and was predicted by age at Fontan, right ventricular morphology and presence of aortopulmonary collaterals on multivariable analysis. Samples with advanced fibrosis had 228 up-regulated genes compared to early fibrosis. Samples with the composite clinical outcome had 894 up-regulated genes compared to those without it. A total of 136 up-regulated genes were identified in both comparisons and these genes were enriched in cellular response to cytokine stimulus, response to oxidative stress, VEGFA-VEGFR2 signaling pathway, TGF-beta signaling pathway, and vasculature development.ConclusionsPatients with FALD and advanced liver fibrosis or the composite clinical outcome exhibit up-regulated genes including pathways related to inflammation, congestion, and angiogenesis. This adds further insight into FALD pathophysiology.
Publisher
Cold Spring Harbor Laboratory