Rapid measurement and machine learning classification of color vision deficiency

Author:

He Jingyi,Bex Peter J.,Skerswetat Jan

Abstract

AbstractColor vision deficiencies (CVDs) indicate potential genetic variations and can be important biomarkers of acquired impairment in many neuro-ophthalmic diseases. However, CVDs are typically measured with insensitive or inefficient tools that are designed to classify dichromacy subtypes rather than track changes in sensitivity. We introduce FInD (Foraging Interactive D-prime), a novel computer-based, generalizable, rapid, self-administered vision assessment tool and applied it to color vision testing. This signal detection theory-based adaptive paradigm computes test stimulus intensity from d-prime analysis. Stimuli were chromatic gaussian blobs in dynamic luminance noise, and participants clicked on cells that contain chromatic blobs (detection) or blob pairs of differing colors (discrimination). Sensitivity and repeatability of FInD Color tasks were compared against HRR, FM100 hue tests in 19 color-normal and 18 color-atypical, age-matched observers. Rayleigh color match was completed as well. Detection and Discrimination thresholds were higher for atypical observers than for typical observers, with selective threshold elevations corresponding to unique CVD types. Classifications of CVD type and severity via unsupervised machine learning confirmed functional subtypes. FInD tasks reliably detect CVD and may serve as valuable tools in basic and clinical color vision science.

Publisher

Cold Spring Harbor Laboratory

Reference24 articles.

1. Opsin genes, cone photopigments, color vision, and color blindness;Color vision: From genes to perception,1999

2. Acquired color vision deficiency;Survey of Ophthalmology,2016

3. Post-COVID-19 syndrome among symptomatic COVID-19 patients: A prospective cohort study in a tertiary care center of Bangladesh

4. Evaluation of an updated HRR color vision test;Visual Neuroscience,2004

5. The new Richmond HRR pseudoisochromatic test for colour vision is better than the Ishihara test;Clinical and Experimental Optometry,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3