GTPase activating protein DLC1 spatio-temporally regulates Rho signaling

Author:

Heydasch Max,Hinderling LucienORCID,van Unen JakobusORCID,Dobrzynski MaciejORCID,Pertz OlivierORCID

Abstract

AbstractTightly regulated spatio-temporal Rho GTPase activity patterns regulate morphogenetic processes such as cell migration. Emerging evidence suggests that binding of Guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) to the cytoskeleton or adhesions mediate feedback regulation to spatio-temporal Rho GTPase activation. To explore such feedback regulation, we study the Rho specific GAP Deleted in Liver Cancer 1 (DLC1) which binds to focal adhesions (FAs) through mechanosensitive interactions. Using a FRET biosensor, we show that DLC1 loss of function leads to global increase in Rho activity and contractility throughout the cell without affecting a striking lamellar RhoA activity band in fibroblasts. To interrogate the Rho GTPase signaling flux, we build a genetic circuit consisting of an optogenetic actuator to control Rho activity, and a Rho activity biosensor. In spreading cells at steady state, optogenetic manipulation of Rho activity reveals that DLC1 controls the rate of Rho activation rather than duration, both at FAs and at the plasma membrane (PM). Local and reversible optogenetic control of contractility shows that DLC1 associates/dissociates with FAs during their reinforcement/relaxation. This might provide positive feedback that locally increases the rate of Rho activation at FAs that experience local tension to facilitate FA disassembly. Our results indicate that DLC1 operates both at the PM and at FAs to regulate global Rho activity levels at steady state, or to amplify local Rho activity at FAs experiencing a strong mechanical input, presumably to induce robust FA disassembly. This provides new insights in the complexity of spatio-temporal Rho GTPase signaling.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3