Application of an EEG-based deep learning model to discriminate children with epileptic spasms from normal controls

Author:

Lu Mingjian,Zhang Yipeng,Diada Atsuro,Oana Shingo,Rajaraman Rajsekar R.,Nariai HirokiORCID,Roychowdhury Vwani,Hussain Shaun A.ORCID

Abstract

AbstractObjectiveGiven that epileptic spasms are often subtle, and that identification of hypsarrhythmia is limited by inadequate inter-rater reliability, there is a significant need for novel tools to aid the clinical identification of Infantile Epileptic Spasms Syndrome (IESS). Deep learning is an emerging technology which may enable efficient classification of disease states and may facilitate discovery of novel biomarkers. In this study, we set out to evaluate whether children with epileptic spasms can be distinguished from normal controls with use of an EEG-based deep learning model.MethodsA deep learning model was trained and validated (5-fold cross validation) using 400 EEG samples (2 awake and 2 sleep samples from 50 children with epileptic spasms and 50 normal controls). Salient frequency bands and specific morphologic EEG features were identified with occlusion sensitivity analysis and targeted input perturbation, respectively.ResultsThe model accurately distinguishes children with epileptic spasms from normal controls, solely on the basis of relatively short EEG samples. Using sleep data, accuracy = 0.95, recall = 0.96, precision (sensitivity) = 0.94, specificity = 0.94, and F1 score = 0.95. With awake data, accuracy = 0.91, recall = 0.84, precision = 0.98, specificity = 0.98, and F1 score = 0.90. The salient frequency bands for classification are 9.7 – 22.0 Hz and 1.0 – 6.8 Hz in sleep and awake EEG, respectively. With visual analysis of extracted salient features, we suspect that the model is identifying cases on the basis of paroxysmal fast activity in sleep and spike-wave activity in wakefulness.ConclusionThis deep learning model represents a first step in the development of efficient algorithms that may aid in identification of epileptic spasms and IESS. More importantly, this approach may facilitate novel EEG-based biomarkers of epileptic spasms.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3