Abstract
SummaryNorepinephrine (NE) is an essential biogenic monoamine neurotransmitter, yet researches using prototype NE sensors were limited by their low sensitivities. Here, we developed next-generation versions of GPCR activation-based NE sensors (GRABNE2mand GRABNE2h) with a superior response, high sensitivity and selectivity to NE bothin vitroandin vivo. Notably, these sensors can detect NE release triggered by either optogenetic or behavioral stimuli in freely moving mice, producing robust signals in the locus coeruleus and hypothalamus. With the development of a novel transgenic mouse line, we recorded both NE release and calcium dynamics with dual-color fiber photometry throughout the sleep-wake cycle; moreover, dual-color mesoscopic imaging revealed cell type‒specific spatiotemporal dynamics of NE and calcium during sensory processing and locomotion. Thus, these new GRABNEsensors are valuable tools for monitoring the precise spatiotemporal release of NEin vivo, providing new insights into the physiological and pathophysiological roles of NE.
Publisher
Cold Spring Harbor Laboratory
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献