Restoration of metabolic functional metrics from label-free, two-photon cervical tissue images using multiscale deep-learning-based denoising algorithms

Author:

Vora NilayORCID,Polleys Christopher M.,Sakellariou Filippos,Georgalis GeorgiosORCID,Thieu Hong-Thao,Genega Elizabeth M.,Jahanseir Narges,Patra Abani,Miller EricORCID,Georgakoudi IreneORCID

Abstract

AbstractLabel-free, two-photon imaging captures morphological and functional metabolic tissue changes and enables enhanced understanding of numerous diseases. However, this modality suffers from low signal arising from limitations imposed by the maximum permissible dose of illumination and the need for rapid image acquisition to avoid motion artifacts. Recently, deep learning methods have been developed to facilitate the extraction of quantitative information from such images. Here, we employ deep neural architectures in the synthesis of a multiscale denoising algorithm optimized for restoring metrics of metabolic activity from low-SNR, two-photon images. Two-photon excited fluorescence (TPEF) images of reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are used. We assess the impact of the specific denoising model, loss function, data transformation, and training dataset on established metrics of image restoration when comparing denoised single frame images with corresponding six frame averages, considered as the ground truth. We further assess the restoration accuracy of six metrics of metabolic function from the denoised images relative to ground truth images. Using a novel algorithm based on deep denoising in the wavelet transform domain, we demonstrate optimal recovery of metabolic function metrics. Our results highlight the promise of denoising algorithms to recover diagnostically useful information from low SNR label-free two-photon images and their potential importance in the clinical translation of such imaging.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3