Random effects adjustment in machine learning models for cardiac surgery risk prediction: a benchmarking study

Author:

Dong TimORCID,Sinha Shubhra,Fudulu Daniel P,Chan Jeremy,Zhai Ben,Narayan Pradeep Narayan,Caputo Massimo,Judge Andy,Dimagli Arnaldo,Benedetto Umberto,Angelini Gianni D.

Abstract

ABSTRACTObjectivesThere is an ongoing debate over whether a procedural specific (e.g. Society of Thoracic Surgeons (STS)) or universal model (e.g. EuroSCORE II (ES II)) should be used for patient selection in cardiac surgery. Recently, we showed that ES II suffers from severe performance drift across several important metrics and that ML approaches such as Xgboost and Random Forest are substantially more resistant to dataset drift. With the growing interest in big data and its leverage through the use of ML approaches that are not limited by linear statistical assumptions, the number of clinical variables can theoretically increase exponentially. In addition, the variations and residual confounding that historically hindered the usefulness of cardiac risk stratification scores can potentially be taken into account. Here, we assess these possibilities on a large United Kingdom (UK) database.MethodsA retrospective analysis of prospectively routinely gathered data on adult patients undergoing cardiac surgery in the UK between 2012-2019. We temporally split the data 70:30 into a training and validation subset. Two sets of seven ML mortality prediction models, with and without variable selection were assessed for consensus Clinical Effective Metric (CEM) overall performance and performance within each of CEM’s consistuent metrics. Confounding and potential causal relationships between covariates and outcomes were evaluated using bayesian network analysis.ResultsA total of 227,087 adults underwent cardiac surgery during the study period with a mortality rate of 2.76%. For non-variable selected (NVS) risk scores with 102 variables, Xgboost with adjustment for hospital variation was superior to the Xgboost without adjustment (p < 2e-16). Both NVS and the 18 variables selected (VS) Xgboost with adjustment for hospital variation risk scores were superior to the Xgboost (ES II 18 variables) model (p < 6.3e-15), with NVS Xgboost with adjustment for hospital variation having the best performance, followed by the VS Xgboost with adjustment for hospital variation (CEM Difference: 0.0150 and 0.0023, respectively).ConclusionsWe have identified an ML adjusted risk score comprising 102 variables that increases risk stratification performance on hold out dataset, removing the need to perform variable selection and reduction. This paves the way for further research that utilises this new set of variables with hospital-based adjustments for the safer selection of patients undergoing cardiac surgery.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3