Connexin 43 and Cell Culture Substrate Differentially Regulate OCY454 Osteocytic Differentiation and Signaling to Primary Bone Cells

Author:

Hoppock Gabriel A.ORCID,Buettmann Evan G.ORCID,Denisco Joseph A.,Goldscheitter Galen MORCID,Condyles Sebastian N.,Juhl Otto J.ORCID,Friedman Michael A.ORCID,Zhang Yue,Donahue Henry J.ORCID

Abstract

AbstractConnexin 43 (Cx43), the predominate gap junction protein in bone, is essential for intercellular communication and skeletal homeostasis. Previous work suggests osteocyte-specific deletion of Cx43 leads to increased bone formation and resorption, however the cell-autonomous role of osteocytic Cx43 in promoting increased bone remodeling is unknown. Recent studies using 3D culture substrates in OCY454 cells suggest 3D cultures may offer increased bone remodeling factor expression and secretion, such as sclerostin and RANKL. In this study, we compared culturing OCY454 osteocytes on 3D Alvetex scaffolds to traditional 2D tissue culture, both with (WT) and without Cx43 (Cx43 KO). Conditioned media from OCY454 cell cultures was used to determine soluble signaling to differentiate primary bone marrow stromal cells into osteoblasts and osteoclasts. OCY454 cells cultured on 3D portrayed a mature osteocytic phenotype, relative to cells on 2D, shown by increased osteocytic gene expression and reduced cell proliferation. In contrast, OCY454 differentiation based on these same markers was not affected by Cx43 deficiency in 3D. Interestingly, increased sclerostin secretion was found in 3D cultured WT cells compared to Cx43 KO cells. Conditioned media from Cx43 KO cells promoted increased osteoblastogenesis and increased osteoclastogenesis, with maximal effects from 3D cultured Cx43 KO cells. These results suggest Cx43 deficiency promotes increased bone remodeling in a cell autonomous manner with minimal changes in osteocyte differentiation. Finally, 3D cultures appear better suited to study mechanisms from Cx43-deficient OCY454 osteocytesin vitrodue to their ability to promote osteocyte differentiation, limit proliferation, and increase bone remodeling factor secretion.New and Noteworthy3D cell culture of OCY454 cells promoted increased differentiation compared to traditional 2D culture. While Cx43 deficiency did not affect OCY454 differentiation, it resulted in increased signaling, promoting osteoblastogenesis and osteoclastogenesis. Our results suggest Cx43 deficiency promotes increased bone remodeling in a cell autonomous manner with minimal changes in osteocyte differentiation. Also, 3D cultures appear better suited to study mechanisms in Cx43-deficient OCY454 osteocytes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3