Cognitive Model Discovery via Disentangled RNNs

Author:

Miller Kevin J.ORCID,Eckstein MariaORCID,Botvinick Matthew M.ORCID,Kurth-Nelson ZebORCID

Abstract

AbstractComputational cognitive models are a fundamental tool in behavioral neuroscience. They instantiate in software precise hypotheses about the cognitive mechanisms underlying a particular behavior. Constructing these models is typically a difficult iterative process that requires both inspiration from the literature and the creativity of an individual researcher. Here, we adopt an alternative approach to learn parsimonious cognitive models directly from data. We fit behavior data using a recurrent neural network that is penalized for carrying information forward in time, leading to sparse, interpretable representations and dynamics. When fitting synthetic behavioral data from known cognitive models, our method recovers the underlying form of those models. When fit to laboratory data from rats performing a reward learning task, our method recovers simple and interpretable models that make testable predictions about neural mechanisms.

Publisher

Cold Spring Harbor Laboratory

Reference44 articles.

1. Deep variational information bottleneck;In: arXiv,2016

2. Li Ji-An , Marcus K Benna , and Marcelo G Mattar . “Automatic Discovery of Cognitive Strategies with Tiny Recurrent Neural Networks”. In: bioRxiv (2023), pp. 2023–04.

3. Learning the value of information in an uncertain world;In: Nature neuroscience,2007

4. Mice exhibit stochastic and efficient action switching during probabilistic decision making;In: Proceedings of the National Academy of Sciences,2022

5. Doing without schema hierarchies: a recurrent connectionist approach to normal and impaired routine sequential action;In: Psychological review,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3