Super-resolution histology of paraffin-embedded samples via photonic chip-based microscopy

Author:

Villegas-Hernández Luis E.ORCID,Dubey Vishesh K.ORCID,Mao Hong,Pradhan Manohar,Tinguely Jean-Claude,Hansen Daniel H.,Acuña SebastiánORCID,Zapotoczny BartłomiejORCID,Agarwal KrishnaORCID,Nystad MonaORCID,Acharya GaneshORCID,Fenton Kristin A.ORCID,Danielsen Håvard E.ORCID,Ahluwalia Balpreet SinghORCID

Abstract

AbstractFluorescence-based super-resolution optical microscopy (SRM) techniques allow the visualization of biological structures beyond the diffraction limit of conventional microscopes. Despite its successful adoption in cell biology, the integration of SRM into the field of histology has been deferred due to several obstacles. These include limited imaging throughput, high cost, and the need for complex sample preparation. Additionally, the refractive index heterogeneity and high labeling density of commonly available formalin-fixed paraffin-embedded (FFPE) tissue samples pose major challenges to applying existing super-resolution microscopy methods. Here, we demonstrate that photonic chip-based microscopy alleviates several of these challenges and opens avenues for super-resolution imaging of FFPE tissue sections. By illuminating samples through a high refractive-index waveguide material, the photonic chip-based platform enables ultra-thin optical sectioning via evanescent field excitation, which reduces signal scattering and enhances both the signal-to-noise ratio and the contrast. Furthermore, the photonic chip provides decoupled illumination and collection light paths, allowing for total internal reflection fluorescence (TIRF) imaging over large and scalable fields of view. By exploiting the spatiotemporal signal emission via MUSICAL, a fluorescence fluctuation-based super-resolution microscopy (FF-SRM) algorithm, we demonstrate the versatility of this novel microscopy method in achieving superior contrast super-resolution images of diverse FFPE tissue sections derived from human colon, prostate, and placenta. The photonic chip is compatible with routine histological workflows and allows multimodal analysis such as correlative light-electron microscopy (CLEM), offering a promising tool for the adoption of super-resolution imaging of FFPE sections in both research and clinical settings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3