Combined direct/indirect detection allows identification of DNA termini in diverse sequencing datasets and supports a multiple-initiation-site model for HIV plus-strand synthesis

Author:

Wang WilliamORCID,Artiles Karen L.ORCID,Machida Shinichi,Benkirane Monsef,Jain Nimit,Fire Andrew Z.ORCID

Abstract

AbstractReplication of genetic material involves the creation of characteristic termini. Determining these termini is important to refine our understanding of the mechanisms involved in maintaining the genomes of cellular organisms and viruses. Here we describe a computational approach combining direct and indirect readouts to detect termini from next-generation short-read sequencing. While a direct inference of termini can come from mapping the most prominent start positions of captured DNA fragments, this approach is insufficient in cases where the DNA termini are not captured, whether for biological or technical reasons. Thus, a complementary (indirect) approach to terminus detection can be applied, taking advantage of the imbalance in coverage between forward and reverse sequence reads near termini. A resulting metric (“strand bias”) can be used to detect termini even where termini are naturally blocked from capture or ends are not captured during library preparation (e.g., in tagmentation-based protocols). Applying this analysis to datasets where known DNA termini are present, such as from linear double-stranded viral genomes, yielded distinct strand bias signals corresponding to these termini. To evaluate the potential to analyze a more complex situation, we applied the analysis to examine DNA termini present early after HIV infection in a cell culture model. We observed both the known termini expected based on standard models of HIV reverse transcription (the U5-right-end and U3-left-end termini) as well as a signal corresponding to a previously described additional initiation site for plus-strand synthesis (cPPT [central polypurine tract]). Interestingly, we also detected putative terminus signals at additional sites. The strongest of these are a set that share several characteristics with the previously characterized plus-strand initiation sites (the cPPT and 3’ PPT [polypurine tract] sites): (i) an observed spike in directly captured cDNA ends, an indirect terminus signal evident in localized strand bias, (iii) a preference for location on the plus-strand, (iv) an upstream purine-rich motif, and (v) a decrease in terminus signal at late time points after infection. These characteristics are consistent in duplicate samples in two different genotypes (wild type and integrase-lacking HIV). The observation of distinct internal termini associated with multiple purine-rich regions raises a possibility that multiple internal initiations of plus-strand synthesis might contribute to HIV replication.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3