Inference for entomological semi-field experiments: Fitting a mathematical model assessing personal and community protection of vector-control interventions

Author:

Fairbanks Emma L,Saeung Manop,Pongsiri Arissara,Vajda Elodie,Wang Yuqian,McIver David J,Tatarsky Allison,Lobo Neil F,Moore Sarah J,Ponlawat Alongkot,Chareonviriyaphap Theeraphap,Ross Amanda,Chitnis Nakul

Abstract

AbstractThe effectiveness of vector-control tools is often assessed by experiments as a reduction in mosquito landings using human landing catches (HLCs). However, HLCs alone only quantify a single characteristic and therefore do not provide information on the overall impacts of the intervention product. Using data from a recent semi-field study which used time-stratified HLCs, aspiration of non-landing mosquitoes, and blood feeding, we suggest a Bayesian inference approach for fitting such data to a stochastic model. This model considers both personal protection, through a reduction in biting, and community protection, from mosquito mortality and disarming (prolonged inhibition of blood feeding). Parameter estimates are then used to predict the reduction of vectorial capacity induced by etofenpox-treated clothing, picaridin topical repellents, transfluthrin spatial repellents and metofluthrin spatial repellents, as well as combined interventions forPlasmodium falciparummalaria inAnopleles minimus. Overall, all interventions had both personal and community effects, preventing biting and killing or disarming mosquitoes. This led to large estimated reductions in the vectorial capacity, with substantial impact even at low coverage. As the interventions aged, fewer mosquitoes were killed; however the impact of some interventions changed from killing to disarming mosquitoes. Overall, this inference method allows for additional modes of action, rather than just reduction in biting, to be parameterised and highlights the tools assessed as promising malaria interventions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3