Ultrastructural details of resistance factors of the bacterial spore revealed by in situ cryo-electron tomography

Author:

Bauda EldaORCID,Gallet BenoitORCID,Moravcova JanaORCID,Effantin GregoryORCID,Chan HelenaORCID,Novacek JiriORCID,Jouneau Pierre-HenriORCID,Rodrigues Christopher D.A.ORCID,Schoehn GuyORCID,Moriscot ChristineORCID,Morlot CecileORCID

Abstract

AbstractThe bacterial spore owes its incredible resistance capacities to various molecular structures that protect the cell content from external aggressions. Among the determinants of resistance are the quaternary structure of the chromosome and an extracellular shell made of proteinaceous layers (the coat), the assembly of which remains poorly understood. Here, in situ cryo-electron tomography (cryo-ET) on bacteria lamellae generated by cryo-focused ion beam micromachining (cryo-FIBM) provides insights into the ultrastructural organization ofBacillus subtilissporangia, including that of the DNA and nascent coat layers. Analysis of the reconstructed tomograms reveal that rather early during sporulation, the chromosome in the developing spore (the forespore) adopts a toroidal structure harboring 5.5-nm thick fibers. At the same stage, coat proteins at the surface of the forespore form a complex stack of amorphous or structured layers with distinct electron density, dimensions and organization. We investigated the nature of the nascent coat layers in various mutant strains using cryo-FIBM/ET and transmission electron microscopy on resin sections of freeze-substituted bacteria. Combining these two cellular electron microscopy approaches, we distinguish seven nascent coat regions with different molecular properties, and propose a model for the contribution of the morphogenetic proteins SpoIVA, SpoVID, SafA and/or CotE.Significance statementBacterial spores are dormant cells that can resist to multiple stresses, including antibiotics, detergents, irradiation and high temperatures. Such resilience is an asset when spores are used for the benefit of humans, as in the case of probiotics, or a major problem for public health, food safety or biowarfare when it comes to spores of pathogenic bacteria. In this study, we combined state-of-the-art cryo-electron tomography and conventional cellular electron microscopy to provide insights into intermediate stages of spore development. Our data reveal the intracellular reorganization of the chromosome into a toroidal fibrillar structure and the complex assembly of the multi-protein, multilayered extracellular coat, shedding light on the mechanisms by which the spore acquires its incredible resistance capacities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3