Selective consistency of recurrent neural networks induced by plasticity as a mechanism of unsupervised perceptual learning

Author:

Goto Yujin,Kitajo KeiichiORCID

Abstract

AbstractUnderstanding the mechanism by which the brain overcomes its inherent inconsistency in activity to achieve consistent information processing is one of the major challenges in neuroscience. Recently, it has been reported that the consistency of neural responses to stimuli that are presented repeatedly is enhanced implicitly in an unsupervised way, and results in improved perceptual consistency. Here, we propose the term "selective consistency" to describe this input-dependent consistency and hypothesize that it will be acquired in a self-organizing manner by plasticity within the neural system. To test this, we investigated whether a reservoir-based plastic model could acquire selective consistency to repeated stimuli. We used white noise sequences randomly generated in each trial and referenced white noise sequences presented multiple times. The results showed that the plastic network was capable of acquiring selective consistency rapidly, with as little as five exposures to stimuli, even for white noise. The acquisition of selective consistency could occur independently of performance optimization, as the network’s time-series prediction accuracy for referenced stimuli did not improve with repeated exposure and optimization. Furthermore, the network could only achieve selective consistency when in the region between order and chaos. These findings suggest that the neural system can acquire selective consistency in a self-organizing manner and that this may serve as a mechanism for certain types of learning.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3