Modeling soybean growth: A mixed model approach

Author:

Delattre MaudORCID,Toda Yusuke,Tressou Jessica,Iwata Hiroyoshi

Abstract

AbstractThe evaluation of plant and animal growth, separately for genetic and environmental effects, is necessary for genetic understanding and genetic improvement of environmental responses of plants and animals. We propose an original approach that combines nonlinear mixed-effects model (NLME) and the stochastic approximation of the Expectation-Maximization algorithm (SAEM) to analyze genetic and environmental effects on plant growth. These tools are widely used in many fields but very rarely in plant biology. During model formulation, a nonlinear mechanistic function describes the shape of growth, and random effects describe genetic and environmental effects and their variability. Genetic relationships among the varieties were also integrated into the model using a kinship matrix. The SAEM algorithm was chosen as an efficient alternative to MCMC methods, which are more commonly used in the domain. It was implemented to infer the expected growth patterns in the analyzed population and the expected curves for each variety through a maximum-likelihood and a maximum-a-posteriori approaches, respectively. The obtained estimates can be used to predict the growth curves for each variety. We illustrate the strengths of the proposed approach using simulated data and soybean plant growth data obtained from a soybean cultivation experiment conducted at the Arid Land Research Center, Tottori University. In this experiment, plant height was measured daily using drones, and the growth was monitored for approximately 200 soybean cultivars for which whole-genome sequence data were available. The NLME approach improved our understanding of the determinants of soybean growth and can be successfully used for the genomic prediction of growth pattern characteristics.Author summaryNonlinear mechanistic models are useful for modeling animal and plant growth; however, their parameters are influenced by both genetic and environmental factors. If the same model can be applied to data with different genetic and environmental factors by allowing parameter variations, it can be used to understand, predict, and control the genetic and environmental influences of growth models based on parameter variation. In this study, we propose a statistical method for integrating a nonlinear mixed-effects model with a nonlinear mechanistic model. The simulation and real data analysis results show that the proposed method was effective in modeling the growth of genetically different soybean varieties under different drought conditions. The usefulness of the proposed method is expected to increase, as high-throughput measurements provide growth data for a large number of genotypes in various environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3