A human primary airway microphysiological system infected with SARS-CoV-2 distinguishes the treatment efficacy between nirmatrelvir and repurposed compounds fluvoxamine and amodiaquine

Author:

Quezada Landys LopezORCID,Medie Felix MbaORCID,Gabriel Elizabeth P.ORCID,Luu Rebeccah J.ORCID,Rubio Logan D.,Mulhern Thomas J.ORCID,Borenstein Jeffrey T.ORCID,Fisher Christine R.ORCID,Gard Ashley L.ORCID

Abstract

AbstractThe COVID-19 pandemic necessitated a rapid mobilization of resources toward the development of safe and efficacious vaccines and therapeutics. Finding effective treatments to stem the wave of infected individuals needing hospitalization and reduce the risk of adverse events was paramount. For scientists and healthcare professionals addressing this challenge, the need to rapidly identify medical countermeasures became urgent, and many compounds in clinical use for other indications were repurposed for COVID-19 clinical trials after preliminary preclinical data demonstrated antiviral activity against SARS-CoV-2. Two repurposed compounds, fluvoxamine and amodiaquine, showed efficacy in reducing SARS-CoV-2 viral loads in preclinical experiments, but ultimately failed in clinical trials, highlighting the need for improved predictive preclinical tools that can be rapidly deployed for events such as pandemic emerging infectious diseases. The PREDICT96-ALI platform is a high-throughput, high-fidelity microphysiological system (MPS) that recapitulates primary human tracheobronchial tissue and supports highly robust and reproducible viral titers of SARS-CoV-2 variants Delta and Omicron. When amodiaquine and fluvoxamine were tested in PREDICT96-ALI, neither compound demonstrated an antiviral response, consistent with clinical outcomes and in contrast with prior reports assessing the efficacy of these compounds in other human cell-basedin vitroplatforms. These results highlight the unique prognostic capability of the PREDICT96-ALI proximal airway MPS to assess the potential antiviral response of lead compounds.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3