Differentially abundant bacteria drive the N2-fixation of a widespread moss in the forest-tundra transition zone

Author:

Escolástico-Ortiz Dennis AlejandroORCID,Blasi Charlotte,Bellenger Jean-PhilippeORCID,Derome NicolasORCID,Villarreal-A Juan CarlosORCID

Abstract

ABSTRACTBryophytes maintain symbiosis with epiphytic bacteria influencing the local nutrient budget. Moss bacterial communities are composed of a core microbiome and bacteria recruited from environmental sources. Notably, symbiotic N2-fixing bacteria contribute to the N budget in northern ecosystems through biological nitrogen fixation. This process may be affected by the abundance of diazotrophs and moss nutrient content. We used the abundant mossRacomitrium lanuginosumin a forest tundra and shrub tundra in Northern Quebec, Canada, to investigate the bacterial and diazotrophic communities associated with habitat type using amplicon sequencing of the bacterial 16S rRNA andnifHgenes and test whether the moss core microbiome has recruitment from the soil bacteria community. ThenifHamplicons and element analysis were used to test the effect of diazotrophic abundance and moss nutrient content on N2-fixation activity estimated by acetylene reduction assays. Moss microbial communities between tundra types hosted similar bacterial diversity but differentially abundant groups. The core microbiome ofR. lanuginosumis composed of bacteria strongly associated with northern mosses with no significant recruitment from the soil. The relative abundances of dominant diazotrophs are significantly correlated with acetylene reduction rates. In contrast, the moss nutrient content did not significantly drive N2-fixation. The proteobacterial generaAzorhizobiumandRhodomicrobiumrepresent newly reported bacteria associated with N2-fixation rates in the tundra. We identified critical bacterial groups related to moss-bacterial symbiosis and N2-fixation in the forest-tundra transition zone, a changing environment susceptible to climate warming.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3