Dopamine functionalized, red carbon quantum dots forin vivobioimaging, cancer therapeutics, and neuronal differentiation

Author:

Yadav Pankaj,Benner Dawson,Varshney Ritu,Kansara Krupa,Shah Krupa,Dahle Landon,Kumar Ashutosh,Rawal Rakesh,Gupta Sharad,Bhatia Dhiraj

Abstract

AbstractOne of the crucial requirements of quantum dots for biological applications is their surface modifications for very specific and enhanced biological recognition and uptake. Toward this, we present the green synthesis of bright, red-emitting carbon quantum dots derived from mango leaf extract (mQDs). These mQDs are conjugated electrostatically with dopamine to form mQDs-dopamine (mQDs: DOPA) bioconjugates. Bright red fluorescence of mQDs was used for bioimaging and uptake in multiple cell lines, tissues, andin vivomodels like zebrafish. mQDs exhibited the highest uptake in brain tissue as compared to others. mQD:DOPA conjugate induced cellular toxicity only in cancer cells while showing increased uptake in epithelial cells and zebrafish. Additionally, the mQDs: DOPA promoted neuronal differentiation of SH-SY5Y cells to complete neurons. Both mQDs and mQDs: DOPA exhibited potential for higher collective cell migrations implicating their future potential as next-generation tools for advanced biological and biomedical applications.TOCmQDs were electrostatically conjugated with dopamine (DOPA) to form the mQDs: DOPA bioconjugate. mQDs are used to image cells, tissues, and zebrafish embryos. mQDs: DOPA kills cancer cells, differentiates neuronal cells, and increases the uptake of mQDs in zebrafish embryos.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3