Abstract
AbstractBackgroundThe impact of genetic variants on gene expression has been intensely studied at the transcription level, yielding in valuable insights into the association between genes and the risk of complex disorders, such as schizophrenia (SCZ). However, the downstream impact of these variants and the molecular mechanisms connecting transcription variation to disease risk are not well understood.ResultsWe quantitated ribosome occupancy in prefrontal cortex samples of the BrainGVEX cohort. Together with transcriptomics and proteomics data from the same cohort, we performed cis-Quantitative Trait Locus (QTL) mapping and identified 3,253 expression QTLs (eQTLs), 1,344 ribosome occupancy QTLs (rQTLs), and 657 protein QTLs (pQTLs) out of 7,458 genes quantitated in all three omics types from 185 samples. Of the eQTLs identified, only 34% have their effects propagated to the protein level. Further analysis on the effect size of prefrontal cortex eQTLs identified from an independent dataset showed clear post-transcriptional attenuation of eQTL effects. To investigate the biological relevance of the attenuated eQTLs, we identified 70 expression-specific QTLs (esQTLs), 51 ribosome-occupancy-specific QTLs (rsQTLs), and 107 protein-specific QTLs (psQTLs). Five of these omics-specific QTLs showed strong colocalization with SCZ GWAS signals, three of them are esQTLs. The limited number of GWAS colocalization discoveries from omics-specific QTLs and the apparent prevalence of eQTL attenuation prompted us to take a complementary approach to investigate the functional relevance of attenuated eQTLs. Using S-PrediXcan we identified 74 SCZ risk genes, 34% of which were novel, and 67% of these risk genes were replicated in a MR-Egger test. Notably, 52 out of 74 risk genes were identified using eQTL data and 70% of these SCZ-risk-gene-driving eQTLs show little to no evidence of driving corresponding variations at the protein level.ConclusionThe effect of eQTLs on gene expression in the prefrontal cortex is commonly attenuated post-transcriptionally. Many of the attenuated eQTLs still correlate with SCZ GWAS signal. Further investigation is needed to elucidate a mechanistic link between attenuated eQTLs and SCZ disease risk.
Publisher
Cold Spring Harbor Laboratory