Towards Pandemic-Scale Ancestral Recombination Graphs of SARS-CoV-2

Author:

Zhan Shing H.ORCID,Ignatieva AnastasiaORCID,Wong YanORCID,Eaton KatherineORCID,Jeffery BenjaminORCID,Palmer Duncan S.ORCID,Murall Carmen LiaORCID,Otto Sarah P.ORCID,Kelleher JeromeORCID

Abstract

AbstractRecombination is an ongoing and increasingly important feature of circulating lineages of SARS-CoV-2, challenging how we represent the evolutionary history of this virus and giving rise to new variants of potential public health concern by combining transmission and immune evasion properties of different lineages. Detection of new recombinant strains is challenging, with most methods looking for breaks between sets of mutations that characterise distinct lineages. In addition, many basic approaches fundamental to the study of viral evolution assume that recombination is negligible, in that a single phylogenetic tree can represent the genetic ancestry of the circulating strains. Here we present an initial version of sc2ts, a method to automatically detect recombinants in real time and to cohesively integrate them into a genealogy in the form of an ancestral recombination graph (ARG), which jointly records mutation, recombination and genetic inheritance. We infer two ARGs under different sampling strategies, and study their properties. One contains 1.27 million sequences sampled up to June 30, 2021, and the second is more sparsely sampled, consisting of 657K sequences sampled up to June 30, 2022. We find that both ARGs are highly consistent with known features of SARS-CoV-2 evolution, recovering the basic backbone phylogeny, mutational spectra, and recapitulating details on the majority of known recombinant lineages. Using the well-established and feature-rich tskit library, the ARGs can also be stored concisely and processed efficiently using standard Python tools. For example, the ARG for 1.27 million sequences—encoding the inferred reticulate ancestry, genetic variation, and extensive metadata—requires 58MB of storage, and loads in less than a second. The ability to fully integrate the effects of recombination into downstream analyses, to quickly and automatically detect new recombinants, and to utilise an efficient and convenient platform for computation based on well-engineered technologies makes sc2ts a promising approach.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3