Strong epistasis constrains the evolution of strict substrate specificity in apicomplexan lactate dehydrogenases

Author:

Wirth Jacob D.,Boucher Jeffrey I.,Xu Changhan,Classen Scott,Theobald Douglas L.

Abstract

AbstractThe homologous enzymes lactate and malate dehydrogenase (L/MDH) are structurally similar but are specific for different substrates. LDH vs MDH specificity is canonically governed by the identity of a single “specificity residue” at position 102. However, LDH function has convergently evolved from a specific MDH at least four times, and the catalytic role of residue 102 is not conserved between different phyla. The apicomplexa are a phylum of obligate, intracellular eukaryotic parasites responsible for wide-spread disease such asPlasmodium falciparum(malaria),Cryptosporidium parvum(cryptosporidiosis),Toxoplasma gondii(toxoplasmosis), andEimeria maxima(eimeriosis). The apicomplexan LDH evolved via a five-residue insertion that produced a novel specificity residue, W107f. The commonly accepted mechanism of LDH specificity involves charge balance and steric occlusion, but our data shows that the general mechanism of apicomplexan LDHs does not use W107f as a steric block. OnlyPlasmodiumLDHs evolved substantial steric specificity, making them exceptional among Apicomplexa. Strong protein epistasis constrained this evolution, making it difficult to revert to ancestral phenotypes. Here, we use ancestral sequence reconstruction (ASR), steady-state kinetics, and x-ray crystallography to characterize apicomplexan LDHs which challenge current assumptions about the evolution of L/MDH activity. We demonstrate the unique specificity ofPlasmodiumLDHs and identify the active site residues controlling their substrate recognition. The extraordinarily high specificity ofPlasmodiumLDHs presents difficulties for small-molecule inhibitor development, and successful drugs against Plasmodium LDH may not be efficacious against other Apicomplexa LDHs and their diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3