Fractional Hitting Sets for Efficient and Lightweight Genomic Data Sketching

Author:

Rouzé TimothéORCID,Martayan IgorORCID,Marchet CamilleORCID,Limasset AntoineORCID

Abstract

AbstractThe exponential increase in publicly available sequencing data and genomic resources necessitates the development of highly efficient methods for data processing and analysis. Locality-sensitive hashing techniques have successfully transformed large datasets into smaller, more manageable sketches while maintaining comparability using metrics such as Jaccard and containment indices. However, fixed-size sketches encounter difficulties when applied to divergent datasets.Scalable sketching methods, such as Sourmash, provide valuable solutions but still lack resourceefficient, tailored indexing. Our objective is to create lighter sketches with comparable results while enhancing efficiency. We introduce the concept of Fractional Hitting Sets, a generalization of Universal Hitting Sets, which uniformly cover a specified fraction of thek-mer space. In theory and practice, we demonstrate the feasibility of achieving such coverage with simple but highly efficient schemes.By encoding the coveredk-mers as super-k-mers, we provide a space-efficient exact representation that also enables optimized comparisons. Our novel tool, SuperSampler, implements this scheme, and experimental results with real bacterial collections closely match our theoretical findings.In comparison to Sourmash, SuperSampler achieves similar outcomes while utilizing an order of magnitude less space and memory and operating several times faster. This highlights the potential of our approach in addressing the challenges presented by the ever-expanding landscape of genomic data.SuperSampler is an open-source software and can be accessed atgithub.com/TimRouze/supersampler. The data required to reproduce the results presented in this manuscript is available atgithub.com/TimRouze/Expe_SPSP.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of k-mer methods and applications in bioinformatics;Computational and Structural Biotechnology Journal;2024-12

2. k-nonical space: sketching with reverse complements;2024-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3