Abstract
AbstractTranscription factors (TFs) orchestrate gene expression programs crucial for cell physiology, but our knowledge of their function in the brain is limited. Using bulk tissues and sorted nuclei from multiple human post-mortem brain regions, we generated a multi-omic resource (1121 total experiments) that includes binding maps for more than 100 TFs. We demonstrate improved measurements of TF activity, including motif recognition and gene expression modeling, upon identification and removal of regions of high TF occupancy. Further, we find that predictive TF binding models demonstrate a bias for these high occupancy sites. Neuronal TFs SATB2 and TBR1 bind unique regions depleted for such sites and promote neuronal gene expression. Several TFs, including TBR1 and PKNOX1, are enriched for risk variants associated with neuropsychiatric disorders, predominantly in neurons. These data are a powerful resource for future studies seeking to understand the role of TFs in epigenetic regulation in the human brain.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献