Developmental hourglass: Verification by numerical evolution and elucidation by dynamical-systems theory

Author:

Kohsokabe TakahiroORCID,Kuratanai ShigeruORCID,Kaneko KunihikoORCID

Abstract

AbstractDetermining the general laws between evolution and development is a fundamental biological challenge. Developmental hourglasses have attracted increased attention as candidates for such laws, but the necessity of their emergence remains elusive. We conducted evolutionary simulations of developmental processes to confirm the emergence of the developmental hourglass and unveiled its establishment. We considered organisms consisting of cells containing identical gene networks that control morphogenesis and evolved them under selection pressure to induce more cell types. By computing the similarity between the spatial patterns of gene expression of two species that evolved from a common ancestor, a developmental hourglass was observed, that is, there was a correlation peak in the intermediate stage of development. The fraction of pleiotropic genes increased, whereas the variance in individuals decreased, consistent with previous experimental reports. Reduction of the unavoidable variance by initial or developmental noise, essential for survival, was achieved up to the hourglass bottleneck stage, followed by diversification in developmental processes, whose timing is controlled by the slow expression dynamics conserved among organisms sharing the hourglass. This study suggests why developmental hourglasses are observed within a certain phylogenetic range of species.Author SummaryUnderstanding the intriguing relationship between development and evolution in multicellular organisms has long been a challenge in biology. A recent hypothesis called the developmental hourglass proposes that there is a conserved middle stage during development across species of the same animal group. Despite growing evidence supporting this hypothesis, the underlying mechanisms and reasons for its emergence have remained elusive due to limited experimental data.To address this gap, we employed numerical evolution of gene regulation networks controlling pattern formation. Remarkably, our simulations revealed that species that diverged relatively recently in phylogeny displayed the highest similarity during the middle stage of development, which gradually diminished as they diverged further phylogenetically. Our findings satisfied not only the criteria of the developmental hourglass but also confirmed several essential characteristics of the developmental hourglass reported in recent experiments. Through theoretical analysis, we further demonstrated that the emergence of the developmental hourglass could be attributed to the acquisition of genes that change slowly and govern developmental processes, which also foster the robustness of development.By integrating computational simulations, theoretical insights, and previous experimental evidence, our study thus provides a comprehensive understanding of the developmental hourglass, which will unravel the intricate relationship between development and evolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3