Engineering cell and nuclear morphology on nano topography by contact-free protein micropatterning

Author:

Sarikhani Einollah,Meganathan Dhivya Pushpa,Rahmani Keivan,Tsai Ching-Ting,Marquez-Serrano Abel,Li Xiao,Santoro Francesca,Cui BianxiaoORCID,Klausen Lasse Hyldgaard,Jahed ZeinabORCID

Abstract

ABSTRACTPlatforms with nanoscale topography have recently become powerful tools in cellular biophysics and bioengineering. Recent studies have shown that nanotopography affects various cellular processes like adhesion and endocytosis, as well as physical properties such as cell shape.To engineer nanopillars more effectively for biomedical applications, it is crucial to gain better control and understanding of how nanopillars affect cell and nuclear physical properties, such as shape and spreading area, and impact cellular processes like endocytosis and adhesion. In this study, we utilized a laser-assisted micropatterning technique to manipulate the 2D architectures of cells on 3D nanopillar platforms. We performed a comprehensive analysis of cellular and nuclear morphology and deformation on both nanopillar and flat substrates. Our findings demonstrate precise engineering of cellular architectures through 2D micropatterning on nanopillar platforms. We show that the coupling between nuclear and cell shape is disrupted on nanopillar surfaces compared to flat surfaces. Furthermore, we discovered that cell elongation on nanopillars enhances nanopillar-induced endocytosis. These results have significant implications for various biomedical applications of nanopillars, including drug delivery, drug screening, intracellular electrophysiology, and biosensing. We believe our platform serves as a versatile tool for further explorations, facilitating investigations into the interplay between cell physical properties and alterations in cellular processes.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3