Abstract
ABSTRACTPlatforms with nanoscale topography have recently become powerful tools in cellular biophysics and bioengineering. Recent studies have shown that nanotopography affects various cellular processes like adhesion and endocytosis, as well as physical properties such as cell shape.To engineer nanopillars more effectively for biomedical applications, it is crucial to gain better control and understanding of how nanopillars affect cell and nuclear physical properties, such as shape and spreading area, and impact cellular processes like endocytosis and adhesion. In this study, we utilized a laser-assisted micropatterning technique to manipulate the 2D architectures of cells on 3D nanopillar platforms. We performed a comprehensive analysis of cellular and nuclear morphology and deformation on both nanopillar and flat substrates. Our findings demonstrate precise engineering of cellular architectures through 2D micropatterning on nanopillar platforms. We show that the coupling between nuclear and cell shape is disrupted on nanopillar surfaces compared to flat surfaces. Furthermore, we discovered that cell elongation on nanopillars enhances nanopillar-induced endocytosis. These results have significant implications for various biomedical applications of nanopillars, including drug delivery, drug screening, intracellular electrophysiology, and biosensing. We believe our platform serves as a versatile tool for further explorations, facilitating investigations into the interplay between cell physical properties and alterations in cellular processes.Graphical Abstract
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献