TMELand: An end-to-end pipeline for quantification and visualization of Waddington’s epigenetic landscape based on gene regulatory network

Author:

Zhu Lin,Kang Xin,Li Chunhe,Zheng JieORCID

Abstract

AbstractWaddington’s epigenetic landscape is a framework depicting the processes of cell differentiation and reprogramming under the control of a gene regulatory network (GRN). Traditional model-driven methods for landscape quantification focus on the Boolean network or differential equation-based models of GRN, which need sophisticated prior knowledge and hence hamper their practical applications. To resolve this problem, we combine data-driven methods for inferring GRNs from gene expression data with model-driven approach to the landscape mapping. Specifically, we build an end-to-end pipeline to link data-driven and model-driven methods and develop a software tool named TMELand for GRN inference, visualizing Waddington’s epigenetic landscape, and calculating state transition paths between attractors to uncover the intrinsic mechanism of cellular transition dynamics. By integrating GRN inference from real transcriptomic data with landscape modeling, TMELand can facilitate studies of computational systems biology, such as predicting cellular states and visualizing the dynamical trends of cell fate determination and transition dynamics from single-cell transcriptomic data. The source code of TMELand, a user manual, and model files of case studies can be downloaded freely fromhttps://github.com/JieZheng-ShanghaiTech/TMELand.

Publisher

Cold Spring Harbor Laboratory

Reference44 articles.

1. C. H. Waddington , The Strategy of the Genes. George Allen & Unwin, 1957.

2. Quantifying the Waddington landscape and biological paths for development and differentiation

3. Quantifying Cell Fate Decisions for Differentiation and Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths

4. A deterministic map of Waddington’s epigenetic landscape for cell fate specification;BMC Systems Biology,2011

5. A stochastic model of epigenetic dynamics in somatic cell reprogramming;Frontiers in Physiology,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3