Longitudinal development of thalamocortical functional connectivity in 22q11.2 deletion syndrome

Author:

Schleifer Charles H.ORCID,O’Hora Kathleen P.ORCID,Jalbrzikowski MariaORCID,Bondy Elizabeth,Kushan-Wells Leila,Lin Amy,Uddin Lucina Q.ORCID,Bearden Carrie E.ORCID

Abstract

AbstractBackground22q11.2 Deletion Syndrome (22qDel) is a genetic Copy Number Variant (CNV) that strongly increases risk for schizophrenia and other neurodevelopmental disorders. Disrupted functional connectivity between the thalamus and somatomotor/frontoparietal cortex has been implicated in cross-sectional studies of 22qDel, idiopathic schizophrenia, and youth at clinical high risk (CHR) for psychosis. Here, we use a novel functional atlas approach to investigate longitudinal age-related changes in network-specific thalamocortical functional connectivity (TCC) in 22qDel and typically developing (TD) controls.MethodsTCC was calculated for nine functional networks derived from resting-state functional magnetic resonance imaging (rs-fMRI) scans collected from n=65 22qDel participants (63.1% female) and n=69 demographically matched TD controls (49.3% female), ages 6 to 23 years. Analyses included 86 longitudinal follow-up scans. Non-linear age trajectories were characterized with general additive mixed models (GAMMs).ResultsIn 22qDel, TCC in the frontoparietal network increases until approximately age 13, while somatomotor and cingulo-opercular TCC decrease from age 6 to 23. In contrast, no significant relationships between TCC and age were found in TD controls. Somatomotor connectivity in 22qDel is significantly higher than TD in childhood, but lower in late adolescence. Frontoparietal TCC shows the opposite pattern.Conclusions22qDel is associated with aberrant development of functional network connectivity between the thalamus and cortex. Younger individuals with 22qDel have lower frontoparietal connectivity and higher somatomotor connectivity than controls, but this phenotype may normalize or partially reverse by early adulthood. Altered maturation of this circuitry may underlie elevated neuropsychiatric disease risk in this syndrome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3