Implantable electrical stimulation bioreactor with liquid crystal polymer based electrodes for enhanced bone regeneration at mandibular large defects in rabbit

Author:

Kim Chaebin,Yang Hoon Joo,Cho Tae Hyung,Lee Beom Seok,Gwon Tae Mok,Shin Soowon,Kim In Sook,Kim Sung June,Hwang Soon Jung

Abstract

AbstractThe osseous regeneration of large bone defects is still a major clinical challenge in maxillofacial and orthopedic surgery. Our previous studies demonstrated that electrical stimulation (ES) with biphasic current pulse showed proliferative effects on bone cells and enhanced secretion of bone-forming growth factors. This study presents an implantable electrical stimulation bioreactor with electrodes based on liquid crystal polymer (LCP), which has excellent bone-binding property. The bioreactor was implanted into a critical sized bone defect and subjected to ES for one week, where bone regeneration was evaluated four weeks after surgery using micro-CT. The effect of ES via bioreactor was compared with a sham control group and positive control group that received recombinant human bone morphogenetic protein (rhBMP)-2 (20 μg). New bone volume per tissue volume (BV/TV) in the ES and rhBMP-2 groups increased to 171% (p< 0.001) and 210% (p < 0.001), respectively, compared to that in the sham control group. In the histological evaluation, there was no inflammation within bone defects and adjacent to LCP in all groups. This study showed that the ES bioreactor with LCP electrodes could enhance bone regeneration at large bone defects, where LCP can act as a mechanically resistant outer box without inflammation.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. Mesenchymal stem cell therapy: Two steps forward, one step back

2. In Vitro Biocompatibility of Various Polymer-Based Microelectrode Arrays for Retinal Prosthesis

3. Electrical stimulation: a novel tool for tissue engineering;Tissue Engineering Part B: Reviews,2012

4. Electrically induced osteogenesis: relationship between charge, current density, and the amount of bone formed: introduction of a new cathode concept;Clinical orthopaedics and related research,1981

5. Signal transduction in electrically stimulated bone cells;J Bone Joint Surg Am,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3