BDQC: a general-purpose analytics tool for domain-blind validation of Big Data

Author:

Deutsch Eric W.ORCID,Kramer Roger,Ames Joseph,Bauman Andrew,Campbell David S.,Chard Kyle,Clark Kristi,D’Arcy Mike,Dinov Ivo D.,Donovan Rory,Foster Ian,Heavner Benjamin D.,Hood Leroy E.,Kesselman Carl,Madduri Ravi,Mi Huaiyu,Muruganujan Anushya,Pa Judy,Price Nathan D.,Robinson MaxORCID,Sepehrband Farshid,Toga Arthur W.,Van Horn John,Zhao Lu,Glusman GustavoORCID

Abstract

AbstractTranslational biomedical research is generating exponentially more data: thousands of whole-genome sequences (WGS) are now available; brain data are doubling every two years. Analyses of Big Data, including imaging, genomic, phenotypic, and clinical data, present qualitatively new challenges as well as opportunities. Among the challenges is a proliferation in ways analyses can fail, due largely to the increasing length and complexity of processing pipelines. Anomalies in input data, runtime resource exhaustion or node failure in a distributed computation can all cause pipeline hiccups that are not necessarily obvious in the output. Flaws that can taint results may persist undetected in complex pipelines, a danger amplified by the fact that research is often concurrent with the development of the software on which it depends. On the positive side, the huge sample sizes increase statistical power, which in turn can shed new insight and motivate innovative analytic approaches. We have developed a framework for Big Data Quality Control (BDQC) including an extensible set of heuristic and statistical analyses that identify deviations in data without regard to its meaning (domain-blind analyses). BDQC takes advantage of large sample sizes to classify the samples, estimate distributions and identify outliers. Such outliers may be symptoms of technology failure (e.g., truncated output of one step of a pipeline for a single genome) or may reveal unsuspected “ signal” in the data (e.g., evidence of aneuploidy in a genome). We have applied the framework to validate real-world WGS analysis pipelines. BDQC successfully identified data outliers representing various failure classes, including genome analyses missing a whole chromosome or part thereof, hidden among thousands of intermediary output files. These failures could then be resolved by reanalyzing the affected samples. BDQC both identified hidden flaws as well as yielded new insights into the data. BDQC is designed to complement quality software development practices. There are multiple benefits from the application of BDQC at all pipeline stages. By verifying input correctness, it can help avoid expensive computations on flawed data. Analysis of intermediary and final results facilitates recovery from aberrant termination of processes. All these computationally inexpensive verifications reduce cryptic analytical artifacts that could seriously preclude clinical-grade genome interpretation. BDQC is available at https://github.com/ini-bdds/bdqc.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3