Architectural traits constrain the evolution of unisexual flowers and sexual segregation within inflorescences: an interspecific approach

Author:

Torices RubénORCID,Afonso Ana,Anderberg Arne A.ORCID,Gómez José M.,Méndez MarcosORCID

Abstract

ABSTRACTMale and female unisexual flowers have repeatedly evolved from the ancestral bisexual flowers in different lineages of flowering plants. This sex specialization in different flowers often occurs within inflorescences. We hypothesize that inflorescence architecture may impose a constraint on resource availability for late flowers, potentially leading to different optima in floral sex allocation and unisexuality. Under this hypothesis we expect that inflorescence traits increasing the difference in resource availability between early and late flowers would be phylogenetically correlated with a higher level of sexual specialization. To test this hypothesis, we performed a comparative analysis of inflorescence traits (inflorescence size, number of flowers and flower density) in the sunflower family, which displays an extraordinary variation in floral sexual specialization at the inflorescence level, i.e. hermaphroditic, gynomonoecious and monoecious species. We found that species with a complete sex separation in unisexual flowers (monoecy) had significantly denser inflorescences. Furthermore, those species arranging their flowers in denser inflorescences also showed greater differences in the size of early and late fruits, a proxy of resource variation between flowers. Our findings support the idea that floral sexual specialization and consequently sexual segregation may be the consequence of different floral sex allocation optima driven by the sequential development of flowers that results in a persistent resource decline from earlier to later flowers.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The dynamic mosaic phenotypes of flowering plants;New Phytologist;2019-06-28

2. Sometimes, sex is in the head;Peer Community In Evolutionary Biology;2019-02-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3