Brian 2: an intuitive and efficient neural simulator

Author:

Stimberg MarcelORCID,Brette RomainORCID,Goodman Dan F. M.ORCID

Abstract

AbstractTo be maximally useful for neuroscience research, neural simulators must make it possible to define original models. This is especially important because a computational experiment might not only need descriptions of neurons and synapses, but also models of interactions with the environment (e.g. muscles), or the environment itself. To preserve high performance when defining new models, current simulators offer two options: low-level programming, or mark-up languages (and other domain specific languages). The first option requires time and expertise, is prone to errors, and contributes to problems with reproducibility and replicability. The second option has limited scope, since it can only describe the range of neural models covered by the ontology. Other aspects of a computational experiment, such as the stimulation protocol, cannot be expressed within this framework. “Brian” 2 is a complete rewrite of Brian that addresses this issue by using runtime code generation with a procedural equation-oriented approach. Brian 2 enables scientists to write code that is particularly simple and concise, closely matching the way they conceptualise their models, while the technique of runtime code generation automatically transforms high level descriptions of models into efficient low level code tailored to different hardware (e.g. CPU or GPU). We illustrate it with several challenging examples: a plastic model of the pyloric network of crustaceans, a closed-loop sensorimotor model, programmatic exploration of a neuron model, and an auditory model with real-time input from a microphone.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. Abbott, L. F. , & Marder, E. (1998). Modeling small networks. In C. Koch & I. Segev (Eds.), Methods in Neuronal Modeling (pp. 361–410). MIT Press, Cambridge, MA, USA.

2. Cython: The Best of Both Worlds

3. Bencina, R. , Burk, P. , et al. (1999–). PortAudio: Portable real-time audio library. http://www.portaudio.com/.

4. Code Generation in Computational Neuroscience: A Review of Tools and Techniques

5. Bower, J. M. , & Beeman, D. (1998). The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System (2nd ed.). Springer-Verlag.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3