Reproducible data management and analysis using R

Author:

Fjukstad BjørnORCID,Shvetsov Nikita,Nøst Therese H.ORCID,Bøvelstad Hege,Halbach Till,Holsbø EinarORCID,Hansen Knut,Lund EilivORCID,Bongo Lars AiloORCID

Abstract

AbstractBackgroundStandardizing and documenting computational analyses are necessary to ensure reproducible results. It is especially important for large and complex projects where data collection, analysis, and interpretation may span decades. Our objective is therefore to provide methods, tools, and best practice guidelines adapted for analyses in epidemiological studies that use -omics data.ResultsWe describe an R-based implementation of data management and preprocessing. The method is well-integrated with the analysis tools typically used for statistical analysis of -omics data. We document all datasets thoroughly and use version control to track changes to both datasets and code over time. We provide a web application to perform the standardized preprocessing steps for gene expression datasets. We provide best practices for reporting data analysis results and sharing analyses.ConclusionWe have used these tools to organize data storage and documentation, and to standardize the analysis of gene expression data, in the Norwegian Women and Cancer (NOWAC) system epidemiology study. We believe our approach and lessons learned are applicable to analyses in other large and complex epidemiology projects.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Reality check on reproducibility;Nat. News,2016

2. Systems epidemiology in cancer;Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol,2008

3. STrengthening the reporting of OBservational studies in Epidemiology-Molecular Epidemiology (STROBE-ME): an extension of the STROBE statement;Eur. J. Epidemiol,2011

4. Reproducibility in Scientific Computing;ACM Comput Surv,2018

5. P. Amstutz et al., “Common Workflow Language, v1.0.” 08-Jul-2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3