Reducing Pollen Dispersal using Forest Windbreaks

Author:

Meyer Thomas,Sagun Vernie,Auer Carol

Abstract

AbstractThe adoption of genetically engineered (GE) crops has created a demand for practical methods to mitigate pollen dispersal and gene flow. The goal of this project was to measure the ability of a narrow forest windbreak to reduce downwind pollen fluxes from switchgrass (Panicum virgatum L.), a North American grass and model biofuels feedstock. Switchgrass fields were established in two identical plots where one had a forest windbreak and the other was in an open (control) site. Switchgrass reproduction, pollen dispersal, wind speed, and wind direction were measured over two years. Daily release of switchgrass pollen peaked at 11:00-13:30 during a flowering period that lasted about 44 days. The best estimate for switchgrass pollen source strength (PSS) was 141 × 109 pollen/season/hectare for fields planted at commercial densities. The forest windbreak consistently decreased downwind switchgrass pollen concentrations by 333-20,000 fold compared to the control plot which had a 58-77 fold decrease due to downwind distance alone. These results suggest that forest windbreaks could be used as a barrier to reduce pollen dispersal and gene flow from switchgrass and other crops.Research HighlightA narrow forest windbreak greatly decreased downwind pollen concentrations from a switchgrass field suggesting that trees can reduce crop gene flow, enhance coexistence between farming systems, and provide ecosystem services.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. Assessing environmental risks of transgenic plants

2. Arritt, R. , W. , Astini, J. , Clark, C.A. , Westgate, J.M.E. , Goggi, A.S. , 2007. Biological windbreaks for pollen confinement, in: Third International Conference on Coexistence between Genetically Modified (GM) and Non-GM Based Agricultural Supply Chains. Seville, Spain, 20-21 November, pp. 131–134.

3. Lagrangian numerical simulations of canopy air flow effects on maize pollen dispersal

4. Ecological Risk Assessment and Regulation for Genetically-Modified Ornamental Plants

5. Wind Dispersal of Artifical Fruits Varying in Mass, Area, and Morphology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3